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Abstract

Immersed boundary methods and immersed interface methods are becoming increasingly popular for the computa-

tion of unsteady flows around complex geometries using a Cartesian grid. While good results, both qualitative and

quantitative, have been obtained, most of the methods rely on low-order corrections to account for the immersed

boundary. The objective of the present work is to present, as an alternative, a high-order modified immersed interface

method for the 2D, unsteady, incompressible Navier–Stokes equations in stream function–vorticity formulation. The

method employs an explicit fourth-order Runge–Kutta time integration scheme, fourth-order compact finite-differences

for computation of spatial derivatives, and a nine-point, fourth-order compact discretization of the Poisson equation

for computation of the stream function. Corrections to the finite difference schemes are used to maintain high formal

accuracy at the immersed boundary, as confirmed by analytical tests. To validate the method in its application to

incompressible flows, several physically relevant test cases are computed, including uniform flow past a circular cylinder

and Tollmien–Schlichting waves in a boundary layer.
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1. Introduction

Immersed boundary methods (IBMs), and, more recently, immersed interface methods (IIMs) have been

introduced as an alternative to traditional approaches for numerically solving initial/boundary-value prob-

lems on domains with complex geometric boundaries. One of the most significant differences between the
IBM and the IIM is the use of a discrete delta function in the former. In both methods, however, the equa-

tions to be solved are discretized on a fixed Cartesian grid. As a result, the domain boundaries do not al-

ways conform to the computational domain boundaries. This gives rise to boundaries immersed inside the

computational domain. With regard to Fig. 1, for example, one would typically like to solve a PDE defined

on the open region X+ with boundary conditions on oXo, the outer boundary which conforms to the com-

putational boundary, and oXi, the immersed boundary which does not. The solution in the region X� may

or may not be of interest. In the present investigation, the solution in X� is set identically equal to zero. In

either case, the immersed boundary oXi represents a singularity if one considers that a particular set of gov-
erning partial differential equations apply throughout the entire domain enclosed by oXo (as in the analyt-

ical study of Sirovich [30], for example); field variables and/or their derivatives will be discontinuous across

the immersed boundary.

The IBM and IIM determine a solution at every grid-point within the domain enclosed by oXo, both

inside and outside the immersed boundary. The equations to be numerically solved are discretized on a rec-

tangular Cartesian grid which is allowed to pass through oXi, as shown in Fig. 1. Several methods for han-

dling the singularity at the immersed boundary have been proposed in the past.

In applications of the immersed boundary method to incompressible flow problems, this singularity is
usually represented by a forcing term F in the Navier–Stokes equations
ou

ot
þ u � ru ¼ Fðx; tÞ � rp þ 1

Re
r2u; ð1Þ
where F has support only on the immersed boundary and is determined from the surface integral
Fðx; tÞ ¼
Z
oXiðtÞ

fðr; s; tÞdðx� Xðr; s; tÞÞ dS: ð2Þ
Fig. 1. An irregular immersed boundary oXi and computational Cartesian grid.
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The term X(r,s,t) is a parametric representation of the immersed boundary surface S, which is considered to

be explicitly given, and d(x) is the three-dimensional Dirac delta function. The term f(r,s,t) is the source

strength, the value of which must be determined by imposing some additional constraint, usually
uðx; tÞjx¼X ¼ �uðX; tÞ; ð3Þ
where �u(X,t) is the known velocity of the immersed boundary.

The earliest IBM approach is probably that of Viecelli [34,35], who proposed a numerical method for

computing inviscid, incompressible flow with arbitrarily shaped curved boundaries using a Cartesian grid.

In his calculations, the pressure at the immersed boundary is iteratively modified until fluid particles move

along the tangent to the boundary. The original immersed boundary method, however, is usually attributed

to the work of Peskin (early work includes [22–25]) who used the method to investigate flow patterns
through heart valves and in a beating heart. In Peskin�s approach, the geometry of the immersed boundary

is determined as part of the overall solution, being dependent upon material properties and the surrounding

viscous fluid flow. More recent investigations and applications of Peskin�s immersed boundary method

include [3,12,28,9].

In the numerical scheme, Eq. (2) is usually discretized as a linear sum of point forces
Fðx; tÞ ¼
X
k

fk dhðx� XkÞDSk; ð4Þ
where fk is the source strength, dh(x) is a numerical representation for the Dirac delta function, k denotes a
finite distribution of points located on the surface of the immersed boundary, and DSk is an element of sur-

face area surrounding point k. A number of approaches have been suggested for determining the term f k.

For example, with �u(X,t) ” 0, Goldstein et al. [12] allow the force to adapt itself to the local flow field

through the use of a feedback loop
fk ¼ a
Z t

0

uðXk;~tÞ d~t þ buðXk; tÞ ð5Þ
where a and b are negative constants which determine the amount of control. A more direct method of
determining fk is discussed by Fadlun et al. [9].

The effect of the discretization represented by Eq. (4) on the accuracy of the immersed boundary scheme

has not been discussed in the literature. With regard to the numerical approximation of the delta function

d(x), Waldén [36] proves that full convergence order of a numerical scheme involving singular source terms

can be achieved away from the singularities, whereas poor convergence will be obtained in the vicinity of

these. To illustrate the problem, and, simultaneously, to motivate the development of the IIM discussed in

this paper, the use of a simple representation for d(x) is investigated, the Gaussian function
dhðxÞ ¼
1ffiffiffi
p
p

r
e�ð

x
rÞ

2

; ð6Þ
where r is a constant determining the effective support of the function. This and similar representations

have been used in several immersed boundary methods [3,12,28]. Results using this representation to

numerically compute the solution to the ODE
u00 � 4u ¼ 2d0ðx� 1=3Þ ð7Þ

are shown in Fig. 2. The effect of the selected singular source representation is to smear out what should be

a sharp discontinuity in the solution in the vicinity of the singularity located at x = 1/3. As r is reduced, the

region that is affected becomes correspondingly smaller, although there is a limit to how small r can be

made.
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Fig. 2. Analytical (—) and numerical (symbols) solution of Eq. (7). Eq. (6) with r/h = 1 (�), r/h = 2 (}), and r/h = 4 (*) was used as a

discrete representation of the singular source term.
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This smearing effect can be seen in an implementation [19,32] of the Goldstein immersed boundary

method [12] used to compute an incompressible, zero-pressure gradient flat-plate boundary layer. The setup
is shown in Fig. 3. The immersed flat plate runs from the inflow to the outflow, and is parallel to the com-

putational, body-fitted wall. Vorticity boundary layer distributions which were obtained with a body-fitted

code and also with the (Goldstein) immersed boundary code are shown in Fig. 4. As expected, a sharp

interface at the immersed wall cannot be obtained.

Results obtained from the immersed boundary method can be improved with increased resolution in the

vicinity of the immersed boundary. This increased resolution is usually only required locally, and is most

efficient when coupled with adaptive mesh refinement (AMR). An investigation of an immersed boundary

method coupled with AMR was carried out by Roma [27].
A significant advance in the immersed boundary method was made by LeVeque and Li [15] who intro-

duced the idea of the immersed interface method mentioned earlier, and, most recently, by Wiegmann and

Bube [37] who proposed the explicit-jump immersed interface method. These researchers made the simple,

but important, observation that standard finite difference techniques fail when applied to non-smooth func-

tions because the underlying Taylor expansions upon which they are based are invalid. Recent articles

which make use of IIM elements for simulating incompressible flows include Li and Lai [17], Calhoun

[5] and Li and Wang [16]. The key idea of the IIM is that the finite differences schemes at the interface
Fig. 3. A flat plate immersed in a rectangular computational domain.
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of the immersed boundary must be corrected in order to maintain the formal accuracy of the underlying

numerical scheme. This topic will be discussed below, following a brief introduction of the governing equa-

tions to which the immersed interface method will be applied.
2. Governing equations

The Navier–Stokes equations are solved in the stream function–vorticity formulation [26] in a Cartesian

coordinate system (x,y). The primitive variables u = (u,v) and p are replaced by two scalar variables, the

vorticity x and the stream function w. The vorticity x is defined here as
x ¼ ou
oy
� ov
ox

ð8Þ
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and the stream function w such that
u ¼ ow
oy

; v ¼ � ow
ox

: ð9Þ
The transport equation for the vorticity x is
ox
ot
þ oðuxÞ

ox
þ oðvxÞ

oy
¼ 1

Re
o2x
ox2
þ o2x

oy2

� �
: ð10Þ
From the definition of the vorticity and the stream function, the following Poisson equation for the stream

function is obtained
r2w ¼ x: ð11Þ

Let n denote the outward-pointing unit vector normal to the body S, s the tangential unit vector, and s the

curvilinear coordinate along the body (counter-clockwise orientation). Given the velocity of the boundary S

as �u(s,t), the corresponding boundary conditions on w are
ow
os

����
S

¼ n � �uðs; tÞ; ð12Þ

ow
on

����
S

¼ �s � �uðs; tÞ: ð13Þ
Eq. (12) can be integrated over S to yield an equivalent Dirichlet boundary condition, so that one takes

instead
wjS ¼ aðs; tÞ; ð14Þ
ow
on

����
S

¼ �s � �uðs; tÞ: ð15Þ
In multiply connected domains, the constant of integration for Eq. (14) is determined by enforcing the con-

dition that the pressure is single valued
I
rp � ds ¼ 0: ð16Þ
There are more boundary conditions for w than required by Eq. (11), so boundary conditions for xmust be

specified such that both constraints on w can be satisfied. In the present case, this is accomplished by using

the definition, Eq. (8), to compute the wall vorticity.
3. Numerical analysis

3.1. Taylor series of functions with jump-singularities

Fig. 5 shows a function f(x) with a discontinuity at the point x = xa. One would like to write a Taylor

series at point xi to evaluate f(x) at point xi + 1. Assume that f(x) is analytic everywhere in the domain

D = {x |xi � 1 6 x 6 xi + 1} except at the point xa (and only at this point, in all of what follows) where it

has a jump discontinuity in the function value itself and/or higher derivatives. If xi < xa, the standard Tay-

lor series cannot proceed through xa to correctly predict f(xi + 1) unless a correction term Ja is added:
f ðxiþ1Þ ¼ f ðxiÞ þ f 0ðxiÞhþ f 00ðxiÞ
h2

2!
þ � � � þ J a; ð17Þ



Fig. 5. A function f(x) with discontinuity at x = xa.

M.N. Linnick, H.F. Fasel / Journal of Computational Physics 204 (2005) 157–192 163
where Ja is
J a ¼ ½f �a þ ½f 0�ah
þ þ 1

2!
½f 00�aðh

þÞ2 þ � � � ; ð18Þ
h = xi + 1 � xi, and h+ = xi + 1 � xa. The term [/]a represents the jump in the value of / at x = xa, that is
½/�a ¼ lim
x!xþa

/ðxÞ � lim
x!x�a

/ðxÞ ð19Þ
so that [f]a represents the jump in the function value at x = xa, [f
0]a the jump in the value of the first deriv-

ative of the function, and so on. The case xi = xa requires one to decide whether the terms f(xi), f
0(xi), etc.

are to be defined as left or right limits, this determining in turn whether or not a correction to the Taylor

series will be required. Finally, for the case xa < xi, no correction is required to predict f(xi + 1).

Eq. (17) is termed the corrected Taylor series. Proof of the validity of the expansion is given by Wieg-

mann and Bube [37]. The corrected Taylor series will be used in the next section to correct finite-difference
schemes that have been obtained using the standard Taylor series.

3.2. Derivation of jump corrected finite-differences

In this section, the case xi < xa discussed above is considered. Using the correction term Ja, one can now

modify any type of standard finite difference scheme to obtain its jump-corrected counterpart. The jump-

corrected scheme will maintain the order of accuracy of the original scheme when the stencil passes through

a jump-singularity of the function to which it is applied.
Consider, for example, a finite difference scheme for numerically approximating a second derivative f (2)
Li�1f
ð2Þ
i�1 þ Lif

ð2Þ
i þ Liþ1f

ð2Þ
iþ1 ¼ Ri�1fi�1 þ Rifi þ Riþ1fiþ1; ð20Þ
where the Li and Ri are functions of the computational grid. The existence of stretched grids is allowed for

in the present discussion. However, all references to formal accuracy are stated for the equidistant-grid case.

If the function f(x) is analytic in the entire domain xi � 1 6 x 6 xi + 1, then the scheme given in Eq. (20) will

be accurate up to the truncation error built into the approximation it represents. For Eq. (20), this error is

proportional to h4.

At this point, a note on the notation used here, and throughout this article, is appropriate. The term Li

refers to the finite-difference coefficients appearing on the left side (hence ‘‘L’’) of the finite difference

scheme (containing derivatives of the function f), and Ri the coefficient on the right side (hence ‘‘R’’) of
the finite difference scheme (containing values of the function f itself). For example, in the case of an equi-

distant grid of step-size h, Eq. (20) becomes
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1

12
ðf ð2Þi�1 þ 10f ð2Þi þ f ð2Þiþ1Þ ¼

1

h2
ðfi�1 � 2f i þ fiþ1Þ ð21Þ
so that Li � 1 = Li + 1 = 1/12, Li = 10/12, Ri � 1 = Ri + 1 = 1/h2, and Ri = �2/h2. Appendix A provides details

on how these coefficients, and indeed all those appearing subsequently in this article, are computed.

Continuing, consider the function depicted in Fig. 5. If the scheme given in Eq. (20) is applied to this
case, a large error, possibly as high as Oðh�2Þ, will result. This fact, and simultaneously, the remedy, can

be seen by observing what would happen if the terms fk and f ð2Þk in Eq. (20) were to be expanded about

some point x* < xa using the corrected Taylor series approximation given by Eq. (17). Clearly, because

it was designed to do so, all derivatives f(n)(x*), n = 0,1, . . . ,5 will drop out of Eq. (20), leaving the deriva-

tives starting at f(6)(x*). This is the truncation error in the approximation represented by this equation.

Additionally, because of the singularity at xa, the jump correction terms Ja will also remain, transforming

Eq. (20) into
Liþ1J a2 ¼ Riþ1J a0 þ Oðh4Þ; ð22Þ

where
J a0 ¼ ½f ð0Þ�a þ ½f ð1Þ�ah
þ þ 1

2!
½f ð2Þ�aðh

þÞ2 þ � � � ; ð23Þ

J a2 ¼ ½f ð2Þ�a þ ½f ð3Þ�ah
þ þ 1

2!
½f ð4Þ�aðh

þÞ2 þ � � � : ð24Þ
One can now see why the error using the uncorrected finite-difference scheme given in Eq. (20) will be

Oðh�2Þ: the coefficient Ri + 1, which is Oðh�2Þ, multiplies the Oð1Þ term [f(0)]a in the remainder Eq. (22).

If, instead, the function were continuous ([f(0)]a = 0), but the first derivative were discontinuous

([f(1)]a 6¼0), then this error would be reduced to Oðh�1Þ. Finally, if all derivatives up to and including f(5) were

continuous, then the original Oðh4Þ accuracy of the finite-difference scheme would be maintained.

To avoid the above situation all-together, it is now clear how the finite-difference scheme in Eq. (20) must
be modified: to the right-hand side of this equation, the term Li + 1Ja2�Ri + 1Ja0 must be added
Li�1f
ð2Þ
i�1 þ Lif

ð2Þ
i þ Liþ1f

ð2Þ
iþ1 ¼ Ri�1fi�1 þ Rifi þ Riþ1fiþ1 þ ðLiþ1J a2 � Riþ1J a0Þ; ð25Þ
where Ja0 and Ja2 are truncated by taking only enough terms to maintain Oðh4Þ.
Now, when the terms in Eq. (25) are expanded using the corrected Taylor series, the jump terms will

cancel, leaving only an Oðh4Þ remainder term. The question remains: how does one obtain the jumps in

the function and derivatives at xa that are required for the correction scheme just outlined? An answer

to this question will be given in the next section.
3.3. Obtaining jumps for jump corrections

In contrast to the case involving singular forcing terms, the jumps in the function and its derivatives can-

not be found independently of the actual solution of the problem. Recognizing this, one is then forced to

use the solution itself to obtain the jumps. Numerically, this can be accomplished through the use of one-

sided finite differences. The accuracy and spatial configuration of the one-sided finite-difference schemes

must be chosen with some care, as the following example will illustrate. The issue of accuracy is presented

first, followed by a discussion of spatial configuration, that is, which points should and should not be used

in the one-sided stencils.

With reference to Fig. 6, the second derivative of a function f(x) at point xi is computed using an explicit
finite difference with jump correction



Fig. 6. Spatial configuration of one-sided finite difference stencils used to compute jumps in Eq. (27). The symbol � indicates points

used in the finite-difference scheme, whereas the symbol � indicates points not used in the scheme.
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f ð2Þi ¼ Ri�1fi�1 þ Rifi þ Riþ1fiþ1 � Riþ1J a0 ð26Þ

and truncated jump correction term
J a0 ¼ ½f ð0Þ�a þ ½f ð1Þ�ah
þ þ 1

2!
½f ð2Þ�aðh

þÞ2 þ 1

3!
½f ð3Þ�aðh

þÞ3: ð27Þ
The expressions (26) and (27) together form an Oðh2Þ expression for f ð2Þi in the presence of a jump singu-

larity at the point x = xa. Starting with [f(0)]a and ending with [f(3)]a, the jump terms must be known to

Oðh4Þ; Oðh3Þ; Oðh2Þ; and OðhÞ, respectively, in order to ensure Oðh2Þ accuracy in Eq. (26). For example,

the [f(3)] term is multiplied by Ri + 1, an Oðh�2Þ quantity, and by (h+)3 which together make a term Oðh1Þ.
If [f(3)]a is represented by a scheme with truncation error OðhÞ, then the overall error contribution from
the entire term 1/3! [f(3)]a(h

+)3 to Eq. (26) will be Oðh2Þ.
The objection might be raised, justifiably, that if the overall solution is Oðh2Þ accurate, then one will not

be able to obtain the term [f(1)]a to the required Oðh3Þ (although not required, it will be assumed that [f(0)]a is

always known). Indeed, in the present example, one order may well be lost locally. The effect of this phe-

nomenon on the errors iei1 and iei2 is investigated through numerical experiments as discussed below. For

now, the approach of discretizing the jump [f(1)]a using an Oðh3Þ scheme will be maintained.

In order to maintain the specified order of accuracy, each of the one-sided finite-difference schemes used

to compute the jumps in Eq. (27) must contain four points. Again referring to Fig. 6, the spatial configu-
ration of these four points is such that the jumps are computed as
½f ðnÞ�a ¼ f ðnÞF:D:þ � f ðnÞF:D:� ; ð28Þ
where
f ðnÞF:D:þ ¼ cnaþ f
þ
a þ cniþ2fiþ2 þ cniþ3fiþ3 þ cniþ4fiþ4; ð29Þ

f ðnÞF:D:� ¼ cna� f
�
a þ cni�1fi�1 þ cni�2fi�2 þ cni�3fi�3: ð30Þ
The coefficients cni are used to determine a numerical approximation to the nth derivative of f by a linear

combination of the fi.
The + and � superscripts on fa indicate, respectively, right and left limits at xa. Note that the points xi

and xi + 1 have intentionally not been used, and that because of this, many problems, numerical stability in
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particular, have been avoided. Admitting arbitrarily shaped immersed boundaries, or further, moving im-

mersed boundaries, it is clear that the singularities must be allowed to move arbitrarily close to, or even lie

on top of, grid points. The spatial configuration of the finite-difference schemes described in this section

allows just that.
4. Numerical method

4.1. The vorticity-transport equation

In this section, the numerical method for solving the vorticity transport equation, Eq. (10), with im-

mersed boundaries is discussed. In this section, and all subsequent sections, it is assumed that the solution

inside the immersed boundary is identically zero.

4.1.1. Temporal discretization

For time integration, either a second-order predictor–corrector or a fourth-order Runge–Kutta method

is used. Both methods are explicit in time.
The vorticity-transport equation is written generically as
o/
ot
¼ gð/Þ: ð31Þ
The time integration scheme advances the solution / of Eq. (31) from time tn to tn + 1 = tn + Dt. For the
predictor–corrector
/1 ¼ /n þ Dtgð/nÞ; ð32Þ

/nþ1 ¼ /n þ
Dt
2
ðgð/nÞ þ gð/1ÞÞ ð33Þ
and for the fourth-order Runge–Kutta
/1 ¼ /n þ
Dt
2
gð/nÞ; ð34Þ

/2 ¼ /n þ
Dt
2
gð/1Þ; ð35Þ

/3 ¼ /n þ Dtgð/2Þ; ð36Þ

/nþ1 ¼ /n þ
Dt
6
ðgð/nÞ þ 2gð/1Þ þ 2gð/2Þ þ gð/3ÞÞ: ð37Þ
One intermediate variable can be eliminated by rewriting the scheme as
/1 ¼ /n þ
Dt
2
gð/nÞ; ð38Þ

/2 ¼ /n þ
Dt
2
gð/1Þ; /1 ¼ /1 þ 2/2; ð39Þ

/2 ¼ /n þ Dtgð/2Þ; /1 ¼
1

3
ð�/n þ /1 þ /2Þ; ð40Þ

/nþ1 ¼ /1 þ
Dt
6
gð/2Þ: ð41Þ
This latter form of the time integration scheme was used in the present investigation.
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4.1.2. Spatial discretization

To compute numerical approximations to the spatial derivatives appearing in Eq. (10), a three-point,

fourth-order compact finite-difference scheme [14,13] is used. For the spatial first derivative, f(1), represent-

ing the terms o(ux)/ox and o(vx)/oy, the scheme is
L1
i�1f

ð1Þ
i�1 þ L1

i f
ð1Þ
i þ L1

iþ1f
ð1Þ
iþ1 ¼ R1

i�1fi�1 þ R1
i fi þ R1

iþ1fiþ1 þ ðL1
I J a1 � R1

I J a0Þ: ð42Þ
The second derivative, f(2), representing the terms o2x/ox2 and o2x/oy2 is computed as
L2
i�1f

ð2Þ
i�1 þ L2

i f
ð2Þ
i þ L2

iþ1f
ð2Þ
iþ1 ¼ R2

i�1fi�1 þ R2
i fi þ R2

iþ1fiþ1 þ ðL2
I J a2 � R2

I J a0Þ: ð43Þ
In these two schemes, I = i + 1 if the jump singularity occurs for xi < xa < xi + 1, in which case one has

h+ = xi + 1�xa and
J a0 ¼ ½f ð0Þ�a þ ½f ð1Þ�ah
þ þ 1

2!
½f ð2Þ�aðh

þÞ2 þ 1

3!
½f ð3Þ�aðh

þÞ3 þ 1

4!
½f ð4Þ�aðh

þÞ4 þ 1

5!
½f ð5Þ�aðh

þÞ5; ð44Þ

J a1 ¼ ½f ð1Þ�a þ ½f ð2Þ�ah
þ þ 1

2!
½f ð3Þ�aðh

þÞ2 þ 1

3!
½f ð4Þ�aðh

þÞ3 þ 1

4!
½f ð5Þ�aðh

þÞ4; ð45Þ

J a2 ¼ ½f ð2Þ�a þ ½f ð3Þ�ah
þ þ 1

2!
½f ð4Þ�aðh

þÞ2 þ 1

3!
½f ð5Þ�aðh

þÞ3: ð46Þ
If the jump singularity occurs for xi � 1 < xa < xi, then I = i�1. In this case one has h� = xa�xi � 1 and
J a0 ¼ �½f ð0Þ�a þ ½f ð1Þ�ah
� � 1

2!
½f ð2Þ�aðh

�Þ2 þ 1

3!
½f ð3Þ�aðh

�Þ3 � 1

4!
½f ð4Þ�aðh

�Þ4 þ 1

5!
½f ð5Þ�aðh

�Þ5; ð47Þ

J a1 ¼ �½f ð1Þ�a þ ½f ð2Þ�ah
� � 1

2!
½f ð3Þ�aðh

�Þ2 þ 1

3!
½f ð4Þ�aðh

�Þ3 � 1

4!
½f ð5Þ�aðh

�Þ4; ð48Þ

J a2 ¼ �½f ð2Þ�a þ ½f ð3Þ�ah
� � 1

2!
½f ð4Þ�aðh

�Þ2 þ 1

3!
½f ð5Þ�aðh

�Þ3: ð49Þ
When xa falls exactly on a grid-point, the decision must be made as to whether the function value here is
set to the left or right limit. The scheme is then corrected or not corrected accordingly. For example, if

xa = xi, and f ðxiÞ ¼ limþx!xi
f ðxÞ, then I = i�1. However, if xa = xi � 1 and f ðxi�1Þ ¼ limx!xþ

i�1
f ðxÞ, then no

correction will be required. The other cases can be handled similarly, and if done consistently, pose no par-

ticular problems. Note that if no correction is required, then the terms ðL1
I J a1 � R1

I J a0Þ and ðL2
I J a2 � R2

I J a0Þ
are not included in the finite difference scheme.

All jumps are discretized at the immersed boundary using one-sided finite-differences of an order such

that the schemes in Eqs. (42) and (43) maintain their formal (fourth-order) accuracy if f were known to

one order higher (fifth). The term [f(1)]a, for example, is discretized to Oðh5Þ, [f(2)]a to Oðh4Þ, etc., requiring
a total of six points in each case.

4.1.3. Solution algorithm

Using the temporal and spatial discretization schemes described above, advancement of the vorticity-

transport equation, Eq. (10), from time tn to time tn + 1 proceeds as follows. At time tn, the vorticity x
and velocities u and v are known both inside the domain and on the immersed boundary, hence the first

and second partial spatial derivatives, e.g. o(ux)/ox, o2x/ox2, etc., appearing in Eq. (10) can be numerically

approximated using the schemes presented in Section 4.1.2.
Along lines x = const. or y = const. which do not intersect the immersed boundary, numerical derivatives

are computed by solving tridiagonal systems of equations as is usually done when using compact finite dif-

ferences [14] in the absence of immersed boundaries. On the other hand, lines which do intersect the im-

mersed boundary require the extra correction terms seen in Eqs. (42) and (43). These correction terms

are required each time, but only if, the three-point stencil passes through the immersed boundary. These
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correction terms are explicit functions of x, u and v, and can be computed at time tn and added to the right-

hand side of the compact system before solving for derivatives. So that there is no confusion, a specific

example is given next.

Consider that Fig. 5 represents a line y = const. along which one would like to numerically approx-

imate the first derivative of/ox, with e.g. f(x) = u(x)x(x). The immersed boundary is intersected between
points xi and xi + 1 at x = xa. Points xi + 1,xi + 2, . . . ,xi + M to the right of xa are inside the body, hence

here f(x) ” 0 (despite the fact that it has not been so depicted in the figure). At grid point xi � 1 the

equation is
L1
i�2f

ð1Þ
i�2 þ L1

i�1f
ð1Þ
i�1 þ L1

i f
ð1Þ
i ¼ R1

i�2fi�2 þ R1
i�1fi�1 þ R1

i fi ð50Þ

No correction term appears because the stencil does not intersect the immersed boundary. In contrast, at

grid point xi, the stencil does intersect the immersed boundary, and the correction ðL1
iþ1J a1 � R1

iþ1J a0Þ is
required
L1
i�1f

ð1Þ
i�1 þ L1

i f
ð1Þ
i þ L1

iþ1f
ð1Þ
iþ1 ¼ R1

i�1fi�1 þ R1
i fi þ R1

iþ1fiþ1 þ ðL1
iþ1J a1 � R1

iþ1J a0Þ ð51Þ
The terms Ja1 and Ja0 are given in Eqs. (44) and (45), where they themselves are seen to involve additional

defined terms such as [f(1)]a. Taking [f(1)]a as an example, this term is computed as
½f ð1Þ�a ¼ f ð1ÞF:D:þ � f ð1ÞF:D:� ; ð52Þ
where f ð1ÞF:D:þ � 0 because it is inside the immersed boundary, and
f ð1ÞF:D:� ¼ c1a� f
�
a þ c1i�1fi�1 þ c1i�2fi�2 þ c1i�3fi�3 þ c1i�4fi�4 þþc1i�5fi�5 ð53Þ
is an explicit finite difference scheme for numerically approximating the (right-hand limit) derivative

f ð1ÞF:D:� . Note that it is through the term f �a appearing in the above equation that variables u, v and x as-

sert their influence as immersed-boundary boundary conditions. Finally, at point xi + 1, the equation is

simply
f ð1Þiþ1 ¼ 0: ð54Þ
This equation, together with Eq. (50), (51), and similar equations for each of the other discrete points

i = 1,2, . . . ,Nx along the line y = const. form a tridiagonal system of equations which can be solved with

any standard numerical linear algebra technique, such as the Thomas algorithm, to obtain the numerical
approximation to the derivative f(1)(x) at grid points xi. Naturally, the scheme is identical for y derivatives

along lines x = const.

One additional note on boundary conditions must be made here. Near the immersed boundary oXi, the

value of the function f has been seen to directly influence the value of the computed numerical derivative

through the term f �a (or f þa , as the case may be). On the computational boundary oXo, i.e. at i = 1 and

i = Nx in the present example, the compact schemes require that a value be specified for the derivative being

computed. For the validation case described in the next section, exact analytical derivatives were provided

from the known analytical solution, Eq. (57). If the derivatives are not known, one-sided schemes may, for
example, be used as an alternative – the exact choice is not dependent on the immersed interface scheme

discussed in this article. Where of interest, specific boundary conditions used for the solution of the

Navier–Stokes equations will be discussed in Section 5.

With the spatial derivatives known at every point in the computational domain, the solution can be

advanced in time using an explicit Runge–Kutta time integration scheme in the usual manner.



M.N. Linnick, H.F. Fasel / Journal of Computational Physics 204 (2005) 157–192 169
4.1.4. Validation

In this section, Eq. (10) is solved with u and v specified
Table

Error

N

65

129

257

The er

B = �5
uðx; y; tÞ ¼ e�at sinðxxÞ sinðxyÞ; ð55Þ
vðx; y; tÞ ¼ e�at cosðxxÞ cosðxyÞ: ð56Þ
A forcing term is added to the right-hand side of Eq. (10), and boundary conditions are imposed such that

the analytical solution is known to be
xðx; y; tÞ ¼ 2xe�at sinðxxÞ cosðxyÞ: ð57Þ

The constants are selected to be x = 2p and a = 1. By comparing the numerical solution of Eq. (10) with the
above analytical solution, the spatial and temporal convergence properties of the immersed boundary

scheme, as applied to the convection–diffusion equation, can be numerically determined.

The numerical solution is computed on the square domain x,y 2 [0,1], and the immersed boundary is a

circle of radius r = 0.1 centered at (x,y) = (0.5,0.5). The fourth-order scheme described above is used for the

spatial discretization, with fourth-order corrections on the immersed boundary, and a second-order predic-

tor–corrector method is used for time integration.

Table 1 presents the results of the spatial convergence study. The numerical solution to Eq. (10) is com-

puted on several grids with the time-step held fixed. The resulting numerical solution is compared with the
analytical solution, Eq. (57), and the maximum absolute error is found as a function of h: iei1 = Ahn + B.

From the data in Table 1, the exponent n is found to be 4.0; for iei2, the exponent n is also 4.0. It can be seen

that the loss of accuracy, about which had been speculated in the discussion above, has not materialized.

There it was pointed out that the immersed boundary scheme appeared to require that the numerical

solution be known to one order higher than was available.

The temporal convergence study is carried out in a similar fashion. The numerical solution to Eq. (10) is

computed for several different time-steps, this time with the spatial grid held fixed. Table 2 presents the re-

sults of the temporal convergence study. The resulting numerical solutions are again compared with the
analytical solution, and the maximum absolute error is found as a function of Dt: iei1 = ADtn + B. From

the data in Table 2, the exponent n is found to be 2.0; for iei2, n = 2.0 is also found. Thus, second-order

temporal accuracy is maintained.

It was empirically determined that, for numerical stability, a safe CFL criterion was approximately

CFL 6 0.3, with the diffusion number satisfying DFL 6 0.25, where CFL = cDt/Dx and DFL = aDt/Dx2

(c is a convection velocity, a a diffusivity).

4.2. The stream function equation

In this section, the numerical solution of the equation for the stream function w, Eq. (11), with immersed

boundaries is discussed. The equation for the stream function is a Poisson equation of the form
r2f ðx; yÞ ¼ qðx; yÞ: ð58Þ
1

(e = fa � fn) in the numerical solution of Eq. (10) at t = 0.4 on grids of size N · N (or step-size h = 1/(N�1)) with fixed Dt

iei1 iei2

3.113409 · 10�6 1.101375 · 10�6

1.949443 · 10�7 6.972817 · 10�8

1.210198 · 10�8 4.368400 · 10�9

ror is iei1 = Ahn + B, with A = 51.49, n = 4.0, and B = �1.1875 · 10�10; iei2 = Ahn + B, with A = 17.03, and n = 4.0, and

.2543 · 10�11.



Table 2

Error (e = fa � fn) in the numerical solution of Eq. (10) at t = 0.2 on grids of size 61 · 61 for various time-steps Dt

Dt iei1 iei2

4.0 · 10�5 4.810835 · 10�6 1.695369 · 10�6

2.0 · 10�5 4.807736 · 10�6 1.694273 · 10�6

1.0 · 10�5 4.806962 · 10�6 1.693999 · 10�6

5.0 · 10�6 4.806768 · 10�6 1.693930 · 10�6

The error is iei1 = ADtn + B, with A = 2.61, and n = 2.0, and B = 4.81 · 10�6; iei2 = ADtn + B, with A = 0.93, and n = 2.0, and

B = 1.69 · 10�6.
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4.2.1. Discretization

The discretization of Eq. (58) is based on two 1D, fourth-order compact finite-difference schemes 2
2 In
Lxxi fxxij ¼ Rxxifij; ð59Þ
Lyyjfyyjj ¼ Ryyjfij: ð60Þ
Here, Lxx, Lyy, Rxx and Ryy denote the coefficients in the schemes, whereas the similarly subscripted fxx and

fyy, on the other hand, represent numerical approximations to the second partial derivatives in the x and y

directions, respectively. When no jump corrections are needed, the 2D, nine-point compact scheme centered
at point (i,j) inside the computational domain is
Lij f ij ¼ Rij qij; ð61Þ
where
Lij ¼ RxxiLyyj þ LxxiRyyj ; ð62Þ
Rij ¼ LxxiLyyj ð63Þ
The above expressions for Lij and Rij are derived using the Poisson equation, Eq. (58), and the schemes in
Eqs. (59) and (60) as follows:
fxxij þ fyyij ¼ qij; ð64Þ
LxxiLyyjðfxxij þ fyyijÞ ¼ LxxiLyyjqij; ð65Þ
LyyjðLxxifxxijÞ þ LxxiðLyyjfyyijÞ ¼ LxxiLyyjqij; ð66Þ
LyyjðRxxifijÞ þ LxxiðRyyjfijÞ ¼ LxxiLyyjqij; ð67Þ
ðRxxiLyyj þ LxxiRyyjÞfij ¼ LxxiLyyjqij; ð68Þ
Lij f ij ¼ Rijqij: ð69Þ
Note that the 2D scheme shown on the last line of this derivation has been obtained by combining two 1D

schemes, one in x and one in y. A consequence of this is that when a 2D stencil intersects the immersed

boundary, the corresponding 2D scheme can be corrected by using the method employed for 1D schemes.

For example, when, as shown in Fig. 7, the nine-point stencil intersects an immersed boundary, jump cor-

rections to the 1D finite-difference schemes in Eqs. (59) and (60) must be made, as described in Section 4.1.2
Lxxi fxxij ¼ Rxxifij � J axI ; ð70Þ
Lyyjfyyij ¼ Ryyjfij � J ayJ ; ð71Þ
dex notation, with the standard summation convention, is used here.



Ω–  

Ω+ 

∂ Ω
i
 

Fig. 7. The intersection of the nine-point finite-difference stencil (�) given in Eq. (61) with an immersed boundary, and jump-

correction terms (h). The points where (�) and (h) overlap are represented by (n).
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where, for convenience, the following definitions are made
J axI ¼ �ðLxxI J a2x � RxxI J a0xÞ; ð72Þ
J ayJ ¼ �ðLyyJ J a2y � RyyJ J a0yÞ ð73Þ
and
I ¼
i� 1; xi�1 < xa < xi;

iþ 1; xi < xa < xiþ1;

�
ð74Þ
and similarly for J (J the subscript, not to be confused with the jump J). Note that I = I(j), and J = J(i), and

that the corrections are being made as if the schemes are being used one-dimensionally.

The resulting 2D discretization of the Poisson equation with jump corrections becomes
Lijfij ¼ Rijqij þ ðLyyjJ axIðjÞ þ LxxiJ ayJðiÞÞ: ð75Þ
Again, so that the notation used does not lead to confusion, the correction term in the finite-difference

scheme given in Eq. (75) is written out, with explicit summation, for the stencil shown in Fig. 7, assuming

for convenience that the stencil is centered at (i,j) = (2,2)
X3

i¼1

X3

j¼1
Lijfij ¼

X3

i¼1

X3

j¼1
Rijqij þ Lxx1J ay3 þ Lxx2J ay1 þ Lyy1J ax3 þ Lyy2J ax1: ð76Þ
For further illustration, the term Jay3 can be expanded using Eq. (73) as
J ay3 ¼ �ðLyy3J a2y � Ryy3J a0yÞ ð77Þ
where, again, the terms Ja2y and Ja0y have been defined in Section 4.1.2. Note that these terms are linear in

the yet unknown function values fij, as well as in the known values f(xa,ya) on the immersed boundary at the
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locations where the immersed boundary is intersected by the grid. These known function values are the

boundary conditions on the immersed boundary (only Dirichlet boundary conditions are considered here),

and are represented by the terms f þa and f �a in Eqs. (29) and (30).

4.2.2. Solution algorithm

The discretization of the Poisson equation without immersed boundaries leads to a system of equations

Ax = b where the matrix A has the following structure:
A ¼

B1 U 1 0 0 0 0

L2 B2 U 2 0 0 0

0 L3 B3 U 3 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 LNx�1 BNx�1 UNx�1

0 0 0 0 LNx BNx

2
6666666664

3
7777777775

ð78Þ
with tridiagonal blocks Li, Bi, and Ui of size Ny · Ny, and where i = 1, . . . ,Nx, sweeping in j. This system

Ax = b is solved using a multigrid technique together with an ILLU (incomplete line LU decomposition)

relaxation method [31]. The ILLU has very good convergence properties, even for highly stretched grids.
Standard relaxation methods, for example successive over relaxation (SOR), successive line over relaxation

(SLOR), or Gauss–Seidel, which perform well on equidistant grids will perform poorly on stretched grids

[38,4].

As the solution procedure without immersed boundaries requires only minor modifications to take them

into account, the discussion of the ILLU procedure will begin assuming that no immersed boundaries are

present. Later, the extensions required to include immersed boundaries will be discussed. In the ILLU

decomposition, one attempts to find a matrix D such that
A ¼ ðLþDÞD�1ðDþUÞ; ð79Þ

where L is lower block-tridiagonal, U is upper block-tridiagonal, and D is block-tridiagonal. Eq. (79) can be

expanded as
A ¼ LþDþUþ LD�1U; ð80Þ

where LD�1U is the block-diagonal matrix
LD�1U ¼

0 0 0 0 0 0

0 L2D�11 U 1 0 0 0 0

0 0 L3D�12 U 2 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 0 LNxD
�1
Nx�1UNx�1

2
66666664

3
77777775
: ð81Þ
From Eqs. (80) and (81), it can be seen that D can be computed as
D1 ¼ B1; Di ¼ Bi � LiD�1i�1Ui�1; i ¼ 2; 3; . . . ;Nx: ð82Þ

The matrix D�1i is in general full, so the approximation of taking only the tridiagonal part is made, resulting

in algorithm 82 being modified as
~D1 ¼ B1; ~Di ¼ Bi � tridiagðLi
~D
�1
i�1Ui�1Þ; i ¼ 2; 3; . . . ;Nx: ð83Þ
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The ILLU decomposition of A is now defined to be
A � ðLþ ~DÞ~D�1ð~DþUÞ: ð84Þ

With this decomposition, the single-grid iterative method for solving Ax = b with starting guess xn

becomes:

(1) r = b � Axn,

(2) ðLþ ~DÞc ¼ r,

(3) ð~DþUÞe ¼ ~Dc,

(4) xn + 1 = xn + e.

A considerable amount of detail has been left out of the present description of the ILLU algorithm. An
efficient implementation this algorithm requires this additional information, and the interested reader is re-

ferred to [31].

The extensions required to included immersed boundaries will now be given. As discussed in Section

4.2.1, the jump-corrections to the nine-point compact discretization are solution dependent. Normally, this

would require one to introduce terms into locations (row m, column n) in the matrix A which, unlike the

tridiagonal matrices Li, Bi, and Ui above, are not at all regular. Here, these terms are not introduced di-

rectly, so that the matrix A always denotes a discretization of the Poisson equation without jump-correc-

tions. Specifically, this means that A only contains the coefficients Lij appearing on the left-hand side of
Eq. (75). The irregularly located right-hand side terms of this equation which are linear in fij are not moved

to the left-hand side. Instead, the irregular entries are handled using the following strategy.

A is ILLU decomposed, and ILLUSolve(r) is defined as a function returning the solution e of
ðLþ ~DÞ~D�1ð~DþUÞe ¼ r: ð85Þ

The relaxation procedure then becomes

(1) r = b�(A + A 0)xn,

(2) e ILLUSolve(r),

(3) r* c1r + c2JumpCorrect(e),

(4) e* ILLUSolve(r*),

(5) xn + 1 xn + e*,

where c1 = 0.8 and c2 = 0.2, and the function JumpCorrect adds all jump-correction terms to the right-

hand side of Ax = b given a guess solution xn. Specifically, in the presence of immersed boundaries, to A is
added a matrix A 0 and (A + A 0)x = b is solved to obtain the jump-corrected solution x to the Poisson equa-

tion. The function JumpCorrect(xn), then, returns the column vector �A 0xn.
The procedure just outlined was empirically determined, and was found to converge in all cases in which

it was employed to solve the Poisson equation with immersed boundaries. It is a convenient algorithm that

allows the ILLU decomposition to be performed on the regular (block tridiagonal) matrix A, yet it easily

accommodates the irregularly located entries introduced by immersed boundaries.

4.2.3. Validation

The Poisson equation (58) is solved numerically on the square domain x,y 2 [0,1], and the immersed

boundary is a circle of radius r = 0.1 centered at (x,y) = (0.5,0.5). The right-hand side source term q(x,y)
and boundary conditions are chosen such that the analytical solution is
f ðx; yÞ ¼ ð�1=xÞ sinðxxÞ cosðxyÞ ð86Þ

with x = 2p.
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A computed solution and the corresponding error are shown in Fig. 8. The reader�s attention is again

drawn to the sharp interface in the solution obtained, and the relative smoothness of the error distribution

in the vicinity of the immersed boundary. Table 3 presents the results of the numerical experiment. The

solution and the corresponding error is computed on several grids, and the errors iei1 and iei2 are tabu-

lated as a function of grid size h. The error is iei1 = Ahn, with n = 4.05, and iei2 = Ahn, with n = 4.07. Both
measures show fourth-order convergence.
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Fig. 8. Numerical solution, top, and corresponding error, e = fa � fn, bottom, of Eq. (58).



Table 3

Error (e = fa � fn) in the numerical solution of Eq. (58) on grids of size N · N (or step-size h = 1/(N�1))
N iei1 iei2

41 3.851207 · 10�7 1.411451 · 10�7

81 2.317782 · 10�8 8.371542 · 10�9

161 1.428926 · 10�9 5.175142 · 10�10

The error is iei1 = Ahn, with A = 1.126, and n = 4.04; iei2 = Ahn, with A = 0.425, and n = 4.05.
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4.3. Computing wall vorticity

In the present work, the wall vorticity x is computed from its definition, Eq. (8). Where allowed by the

intersection, explicit finite-differences are used to compute uy and vx. For example, referring to Fig. 9, one

can see that at the intersection denoted by the symbol h, one can easily compute vx, but the computation of

uy would require a 2D finite-difference scheme. For the intersection denoted by �, the reverse is true.

The following strategy was developed to avoid the use of 2D stencils in the cases mentioned above. The

case of computing vx at the intersection denoted by the symbol s is considered. If the tangent vector makes

an angle / with the x axis such that p/4 6 j/j 6 3p/4, then vx at s-intersections are computed by interpo-

lating nearest neighbor h-intersection values along the arc defining the immersed boundary (all angles are
given assuming a ± p branch-cut in the arg function). For the angles / not satisfying this inequality, the

known derivative vs computed along the arc length s, and vy computed using an explicit finite-difference

scheme are used to obtain
Fig. 9
vx ¼
vs � vyys

xs
; ð87Þ
where the tangent vector s = (xs,ys). A similar strategy is used to obtain uy at h-intersections.

To numerically validate this strategy for computing wall vorticity, the values of u and v are set to

analytical functions
Ω+

∂Ωi

Ω-

. Stencils used for computing wall vorticity at an immersed boundary: first derivative in y (�), and first derivative in x (h).



Table

Error

N

129

257

513

The er
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uðx; yÞ ¼ sinðxxÞ sinðxyÞ; ð88Þ
vðx; yÞ ¼ cosðxxÞ cosðxyÞ ð89Þ
on an equidistant grid x,y 2 [0,1] with a circular immersed boundary of radius r = 0.1 centered at

(x,y) = (0.5,0.5). Fourth-order finite-difference stencils are used, where allowed by the grid/immersed

boundary intersection, to compute uy and vx; interpolation along the immersed boundary is also done to

fourth order. As seen in Table 4, the resulting wall vorticities are computed to fourth-order accuracy.

For flows around bluff bodies, an inviscid flow solution was often specified as an initial condition. How-

ever, special care is needed here, as suddenly imposing no-slip boundaries on the inviscid solution may cause

the numerical solution to blow-up. To circumvent this problem, first-order differences are used to compute
wall vorticity during the initial start-up phase. Shortly thereafter, however, higher-order differences are

switched on for the remainder of the calculation. For the Navier–Stokes calculations using stretched grids

near the immersed boundary, a third-order finite-difference scheme (consisting of four points) was used.

4.4. Complete solution algorithm for Navier–Stokes equations

The solution of the Navier–Stokes equations in stream function–vorticity formulation consists mainly

of the three computational components discussed above, specifically, the time integration of a convec-
tion–diffusion equation, the vorticity-transport equation, Eq. (10), the solution of a Poisson equation for

the stream function, Eq. (11), and the computation of the wall vorticity.

The algorithm starts at time tn with discrete variables u, v and x known everywhere in the domain

X� [ X+, and, additionally, on both the computational boundary oXo and the immersed boundary oXi.

The vorticity-transport equation, Eq. (10), can be used to advance to vorticity in time from tn to tn + 1,

as discussed in Section 4.1.

Next, the stream function equation, Eq. (11), is solved using the scheme discussed in Section 4.2 to ob-

tain the stream function w at time tn + 1. The source term on the right-hand side of Eq. (11) is equal to the
vorticity x at tn + 1. At this stage, the wall vorticity at the immersed boundary is not known. However, for

the cases considered in the present investigation, it is also not needed. Specifically, the computational

boundary oXo is either:

(1) An inflow boundary where x is known: for flow past a bluff body, x = 0; for a boundary layer flow,

x = xB, where xB is a solution of Prandtl�s boundary layer equations.

(2) A free stream boundary assumed to be irrotational, so that x = 0.

(3) An outflow boundary where x is ramped to a specified distribution, e.g. zero in the case of flow past a
bluff body. See [21] for a discussion of outflow treatment using buffer domain techniques.

Were the computational boundary to consist entirely, or even partly, of a no-slip wall, then the wall vor-

ticity would be required. In such a case, an influence matrix method could be used [7]. On the other hand, at

grid points inside the domain X+, the vorticity is known at time tn + 1 from time integration of its transport

equation. At grid points inside the immersed boundary (in X�), x = 0. A grid point whose location (x,y)
4

(e = xa � xn) in the numerical computation of wall vorticity on grids of size N · N (or step-size h = 1/(N�1))
iei1 iei2

1.3946 · 10�5 3.9883 · 10�6

8.6255 · 10�7 2.0887 · 10�7

5.4499 · 10�8 1.6603 · 10�8

ror is e = Ahn, with A=3.7251 · 103, n = 4.0 for iei1, and A=7.9925 · 102, n = 4.0 for iei2.



Table 5

Parameters used to compute the flow around a circular cylinder

Parameter Value

Domain size (k = 0.056, k = 0.023)

Inflow x1 0.0, 0.0

Outflow x2 46.5795, 46.5795

Free stream y1 �8.9401, �21.3278
Free stream y2 8.9401, 21.3278

Grid size (k = 0.056, k = 0.023)

Nx 641, 641

Ny 281, 321

Dxmin 1.386 · 10�2 (�D/72)

Dymin 1.148 · 10�2 (�D/87)

Miscellaneous

Cylinder center (10.0,0.0)

Dt 5.0 · 10�4 to 1.0 · 10�3

Time integration second order P-C

Buffer start xB 35.2033
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exactly coincides with the immersed boundary can also be treated as if it were inside the immersed bound-

ary using the convention that f ðxaÞ ¼ limx!xina
f ðxÞ. Here, the superscript ‘‘in’’ is meant to indicate that the

limit is taken from inside the body, and that the finite difference scheme for the Poisson equation should be

jump-corrected accordingly.

The validity of the above strategy was confirmed by allowing the immersed flat plate described in Section
5.2 to come arbitrarily close to a set i = 1,2, . . . ,Nx of grid points j = const, and monitoring the resulting

solution during its approach. To within the order of the numerical scheme, no difference was detected be-

tween solutions where the immersed plate was placed half-way between grid points j and j + 1, and solu-

tions where the plate was placed arbitrarily close to one of the grid points.

Once the stream function has been computed, the velocities u and v can be determined from Eq. (9). With

the velocity field determined, the wall vorticity can be computed as a final step, using the scheme discussed

in Section 4.3.
5. Results

5.1. Uniform flow past a circular cylinder

In this section, the developed immersed boundary method is used to compute the 2D flow around a cir-

cular cylinder placed in a uniform free-stream. The salient features of the computed flow fields are com-

pared with results, both experimental and computational, available in the literature. Reynolds numbers
(ReD = U1D/m) in the range ReD = 20 to ReD = 200 are considered, spanning the range of steady, steady-

to-unsteady transitional, and unsteady flow regimes. Experimentally, it has been found that the

well-known phenomenon of periodic vortex shedding first appears for Reynolds numbers around 40–50;

for smaller Reynolds numbers, the flow is found to be steady [33,1].

The circular cylinder has served as a validation case for several past immersed boundary implementa-

tions including those of Goldstein et al. [12], Saiki and Biringen [28], and Calhoun [5]. The former two stud-

ies make use of a singular forcing term to represent the immersed boundary, the lower accuracy of which
Table 6

Steady flow past a circular cylinder: length L of standing eddy behind cylinder, locations a and b of the vortex centers, separation angle

h, and drag coefficient CD for ReD = 20 and ReD = 40

L a b h CD

ReD = 20

Fornberg [11] 0.91 – – 45.7� 2.00

Dennis and Chang [8] 0.94 – – 43.7� 2.05

Coutanceau and Bouard [6]* 0.93 0.33 0.46 45.0� –

Tritton [33]* – – – – 2.09

present, k = 0.056 0.93 0.36 0.43 43.9� 2.16

present, k = 0.023 0.93 0.36 0.43 43.5� 2.06

ReD = 40

Fornberg [11] 2.24 – – 55.6� 1.50

Dennis and Chang [8] 2.35 – – 53.8� 1.52

Coutanceau and Bouard [6]* 2.13 0.76 0.59 53.8� –

Tritton [33]* – – – – 1.59

present, k = 0.056 2.23 0.71 0.59 53.4� 1.61

present, k = 0.023 2.28 0.72 0.60 53.6� 1.54

See Fig. 12 for dimension nomenclature. Note: (1) (*) denotes experimental results. (2) The results of Coutanceau [6] cited here are for

k = 0, obtained via extrapolation.
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leads to the ‘‘noise’’ seen in plots of their results near the immersed boundary. Comparisons, similar to

those to be presented in this section, with published literature made by the authors show relatively good

agreement, despite the lower accuracy. Like the backward-facing step case in Terzi et al. [32], the param-

eters selected for study in the circular cylinder validation may not require high near-wall accuracy to be

faithfully reproduced.
Numerical parameters used in the computations described in this section are given in Table 5. At the

inflow, a uniform flow of w(x1,y) = y with x = 0 is specified. The upper and lower free-stream boundaries
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are specified as shear-free walls, w(x,y1) = y1, w(x,y2) = y2, and x = 0. The location of these boundaries can

have a significant impact on the calculation if not placed far enough away. The parameter k, the ratio of the

cylinder diameter D to the domain height H = y2�y1, is introduced as a measure and made small enough to

minimize the influence of the free stream boundaries. Grid stretching in the y-direction allows this to be
accomplished with relatively few points. At the outflow, a buffer domain technique [21] is used to ramp

the vorticity down to zero. A uniform flow at the outflow, w(x2,y) = y, can then be specified.

Results for the steady regime of Reynolds numbers ReD = 20, 40, and 50 were obtained, a typical exam-

ple being given in Fig. 10. The pair of attached, steady, symmetric vorticies behind the cylinder are found to

grow in length as ReD increases, and the vorticity generated at the cylinder surface is less able to penetrate

the oncoming free-stream. Table 6 presents a comparison of the present results with those published in the

literature. For all quantities of interest, excellent agreement is found within the scatter of the data (see Fig.

12).
Table 7

Unsteady flow past a circular cylinder: period s, Strouhal number St, drag coefficient CD, and lift coefficient CL

St = 1/s CD CL

ReD = 100

Berger and Wille [2]* 0.16–0.17 – –

Liu et al. [18] 0.165 1.35 ± 0.012 ± 0.339

present, k = 0.056� 0.169 1.38 ± 0.010 ± 0.337

present, k = 0.023 0.166 1.34 ± 0.009 ± 0.333

ReD = 200

Berger and Wille [2]* 0.18–0.19 – –

Belov [1] 0.193 1.19 ± 0.042 ± 0.64

Rogers, Kwak� 0.185 1.23 ± 0.050 ± 0.65

Miyake et al.� 0.196 1.34 ± 0.043 ± 0.67

Liu et al. [18] 0.192 1.31 ± 0.049 ± 0.69

present, k = 0.056 � 0.199 1.37 ± 0.046 ± 0.70

present, k = 0.023 0.197 1.34 ± 0.044 ± 0.69

Comparison of present results with results published in the literature. Note: (1) (*) denotes experimental results. (2) � in Belov [1]. (3) �
approximate (see text). (4) St determined from time variation of CL.



0 5 10 15 20 25
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

t

C
L

0 5 10 15 20 25
1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

t

C
D

Fig. 13. Lift coefficient CL, top, and drag coefficient CD, bottom, versus time t for uniform flow past a circular cylinder, ReD = 200,

k = 0.023.

M.N. Linnick, H.F. Fasel / Journal of Computational Physics 204 (2005) 157–192 181
As noted above, the case ReD = 50 lies at the upper range of the transition regime between steady and

unsteady flow. This case was allowed to run for a considerably long time, but remained steady for the

course of the calculation. Given enough time, the calculation may have eventually become unsteady on

its own due to round-off or other sources of numerical noise. Instead, a small pulse was introduced into

the recirculation zone behind the cylinder, and the calculation continued. As seen in Fig. 11, the flow be-

comes unsteady with the formation of a vortex street behind the cylinder. By predicting a steady/unsteady

transition near ReD = 50, further proof has been obtained that the immersed boundary code is capable of

accurately modelling the physics of the flow.
Flows with higher Reynolds numbers are also shown in Fig. 11. Here the flow becomes unsteady on its

own, that is, without requiring any external disturbance to trigger the instability. The computations are

started with an inviscid solution as initial condition, which is equivalent to impulsively starting the cylinder

from rest. A symmetric recirculating eddy then forms behind the cylinder, and grows in length until the point

in time at which unsteady vortex shedding of frequency f (or period s) sets in. Table 7 compares the Strouhal

number St = f D/U1, lift coefficient CL, and drag coefficient CD obtained in the present study with results



Fig. 14. Close-up view of, top to bottom, u, v, and x in the vicinity of the cylinder surface for ReD = 200, k = 0.056. Exponentially

spaced contour levels are given below the mesh plot, for which every second grid-point is shown.
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Table 8

Parameters for the TS-wave computation

Parameter Value

Physical parameters

ReL 105

Domain size

Inflow x1 0:4 ðRed1 ¼ 344Þ
Outflow x2 5:326 ðRed1 ¼ 1256Þ
Free stream y2 0.4 (�11d)

Grid size

Nx 541

Ny 117

Dxmin 7.992 · 10�3 (kTS � 21Dxmin)

Dymin 1.566 · 10�4

Forcing

Range in x 0.8375! 0.9225

Frequency f 1336.8 Hz (F = 1.4 · 10�4)

Miscellaneous

Dt 1.122 · 10�3

Time integration fourth order R–K

Buffer start xB 4.554 ðRed1 ¼ 1161Þ
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published in the literature. As for the steady flows, good agreement is found. For domains with k = 0.056, the

drag coefficient was found to exhibit behavior that was somewhat irregular. The deviation was more pro-

nounced for lower Reynolds numbers. The lift coefficient, however, was almost unaffected. Where irregular-

ities occurred, data values cited have been labelled approximate, and were obtained as the mean and first

harmonic of a Fourier analysis of the time series. For domains with k = 0.023, this irregularity disappeared,

and both the lift and drag coefficients exhibited regular sinusoidal behavior, as in Fig. 13.

Close-up views of the solution in the vicinity of the immersed boundary are shown in Fig. 14 for

ReD = 200. The solutions are presented as mesh plots so that their behavior near the immersed boundaries
can be seen. The sharp interface near the immersed boundary is evident, especially for the vorticity, which is

discontinuous across the immersed boundary.

5.2. Tollmien–Schlichting waves in a Blasius boundary layer

In this section, the application of the immersed boundary method to computing Tollmien–Schlichting

waves in a zero pressure-gradient, flat-plate boundary-layer is investigated. For comparison, the results

are obtained for both a body-fitted code (the temporally and spatially fourth-order accurate code nst2d

of Meitz and Fasel [21]) and the present immersed boundary scheme. This test case was selected because, in

contrast to the circular cylinder case described above, near-wall accuracy, in particular, the phase relation

between wave velocity components close to the wall, is critically important if correct results are to be

obtained [32].

The setup is shown in Fig. 3 where the immersed flat plate wall runs from the inflow to the outflow

boundary. The immersed wall does not lie on the computational grid, but rather half-way between grid

points j = 6 and j = 7 in the y-direction. Computational parameters are given in Table 8. The free-stream

is placed roughly 11 boundary-layer thicknesses away from the wall, and the boundary condition here is
taken as wy = 1. The outflow condition is set, somewhat less than optimally, to wxx = 0, so that one may
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obtain w by solving the ODE wyy = x. This is equivalent to setting vx = 0, an approximation that is only

valid for Rex� 1. However, the outflow is placed far enough away so that the adverse upstream-influence
is minimal.

As a first step, the undisturbed flat-plate boundary layer is computed, starting with the Blasius similarity

solution as initial condition and converging to a steady-state. Figs. 15 and 16 compare the resulting u and x
profiles at various x-locations along the immersed wall with those computed with the body-fitted code.

Excellent agreement between the body-fitted and immersed boundary code is found. In particular, the sharp

interface in x at the wall is captured.

Next, small, time-harmonic disturbances are introduced into the steady boundary layer at a given up-

stream location near the inflow. If the disturbances introduced are small enough, their behavior is, to a
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good approximation, ‘‘linear’’ (exponential growth or decay), and the resulting velocity and vorticity pert-

urbations can be compared with the results from linear stability theory (LST) [29,20]. LST predicts a range

of unstable frequencies for which wave-like perturbations of a laminar boundary-layer will exponentially
grow as they are convected downstream. These wave-like perturbations are known as Tollmien–Schlichting

waves (TS-waves).

The results of the time harmonic forcing are shown in Figs. 17–20. Figs. 17 and 18 depict the amplitude

envelopes of the u and x disturbance quantities. Assuming linear behavior, these quantities are obtained as

the first harmonic of a Fourier series with the fundamental frequency equal to the forcing frequency.

Numerically, these values are computed with an FFT applied to the data time series. The agreement



0 0.01 0.02 0.03 0.04 0.05
1

0

1

2

3

4

5

6
x 10

4

y

u

2 1 0 1 2 3 4

x 10
3

1

0

1

2

3

4

5

6
x 10

4

y

u

Fig. 17. Comparison of disturbance u-velocity profiles (fundamental) at several downstream locations: x = 1.214 ðRd1 ¼ 600Þ (�),
x = 2.157 ðRd1 ¼ 800Þ (}), and x = 3.372 ðRd1 ¼ 1000Þ (*). Symbols indicate values computed using an immersed wall located at y = 0,

and solid lines results from the code nst2d of Meitz and Fasel [21]. Lower figure is a zoom-in of the upper figure near y = 0.

186 M.N. Linnick, H.F. Fasel / Journal of Computational Physics 204 (2005) 157–192
between the body-fitted results and the immersed boundary results is again excellent. Once more it is noted

that the sharp interface in x is captured by the immersed boundary scheme. A comparison of the phase

distribution for u is shown in Fig. 19 for reference, where excellent agreement is also found. Finally,

Fig. 20 shows the spatial development of the inner maximum of the disturbance u-velocity amplitude enve-

lope, along with the prediction of LST. The results agree favorably, and in addition, agree well with those

of Fasel and Konzelmann [10]. The deviation between the numerical solutions and LST is due to simplify-

ing assumptions used in the derivation of LST (specifically, non-parallel effects [10]).
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5.3. Additional examples

Two additional examples are shown in Figs. 21 and 22 to illustrate the flexibility of the immersed bound-

ary code with respect to geometry. In the first figure, flow over a curved wall is shown. A zero pressure-gra-

dient boundary layer solution and a no slip wall are specified at the inflow and free stream boundaries,

respectively. The immersed boundary runs from the inflow to the outflow, similar to the Tollmien–Schlich-

ting case described above. In the second figure, the flow past a 6:1 ellipse is shown. The boundary condi-

tions used are the same as for the circular cylinder case.
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The present immersed boundary technique allows for a wide range of complex geometries to be studied

within a Cartesian grid framework. There are some geometries, however, that will require the immersed

boundary method, as described here, to be modified. For example, geometries that possess cusps will have

jump corrections that require more points in X+ than are available. In this case, one would have to resort to

increasing the resolution, perhaps using AMR, or to using a 2D finite-difference scheme to compute jump

corrections.
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6. Conclusions

An immersed interface method for accurately solving incompressible flow problems has been presented.

By separately studying the convection–diffusion equation and Poisson equation solutions as model equa-

tions, the accuracy of the numerical method has been shown to be fourth order. For the 2D, high-Reynolds
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number, incompressible flow test-cases presented, very good agreement was found with results published in

the literature. The extension of the method to 3D should present no particular difficulties beyond the in-

creased complexity required to determine intersections of the immersed boundary with the underlying Car-

tesian grid, and the corresponding jump corrected finite-difference stencils. In addition, a suitable

formulation of the Navier–Stokes equations will have to be selected. The stream function–vorticity formu-
lation used in the present investigation is only valid in two dimensions.
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Appendix A. Derivation of finite difference schemes

All of the coefficients, e.g. Li and Ri, in the finite difference schemes used have been derived by perform-

ing a Taylor series analysis. Each term in the scheme, e.g. f ð2Þiþ1, fi � 1, is expanded about some point x*, and

the coefficients are used maximize the formal accuracy of the approximation, instead of, say, sacrificing for-

mal accuracy and improving wave resolution accuracy (as discussed in [14]).

Most of the grids used in the present investigation were non-equidistant. This allowed for the more effi-
cient clustering of points in the domain where higher resolution was required, and courser gridding where

gradients in the solution were mild. The expressions for the coefficients appearing in the finite difference

schemes used are, in general, much more complex functions of the grid points xi than are their equidistant

counterparts. As a result, the systems of equations satisfied by these coefficients, rather than their explicit

forms, are presented here.

In fact, these systems are actually solved in the current implementation of the numerical scheme dis-

cussed above. Rather than deriving these coefficients analytically, using perhaps symbolic manipulation

software, and hard-coding them into the computer program, a much more flexible alternative was used.
The finite difference scheme could be defined as a linear combination of the function and its derivatives,

i.e. L(fi,f
0
i,f
0 0
i, . . .) = 0, and the stencil specified, and a subroutine would return the coefficients maximizing

the formal accuracy of the stencil. Problems due to ill-conditioning of the resulting system of equations

were not encountered.

(1) Compact first-order derivatives, f(1): Eqs. (42), (50), (51).
Li�1f
ð1Þ
i�1 þ Lif

ð1Þ
i þ Liþ1f

ð1Þ
iþ1 ¼ Ri�1fi�1 þ Rifi þ Riþ1fiþ1; ð90Þ

0 0 0 1 1 1

1 1 1 hi�1 0 hiþ1
hi�1 0 hiþ1 h2i�1=2! 0 h2iþ1=2!

h2i�1=2! 0 h2iþ1=2! h3i�1=3! 0 h3iþ1=3!

h3i�1=3! 0 h3iþ1=3! h4i�1=4! 0 h4iþ1=4!
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2
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Li�1
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Liþ1

�Ri�1

�Ri

�Riþ1

2
666666664

3
777777775
¼

0

0

0

0

0

1

2
666666664

3
777777775
; ð91Þ
where hi � 1 = xi � 1�xi, and hi + 1 = xi + 1�xi.
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(2) Compact second-order derivatives, f(2): Eqs. (20), (25), (43), (59), (60), (70), (71).
Li�1f
ð2Þ
i�1 þ Lif

ð2Þ
i þ Liþ1f

ð2Þ
iþ1 ¼ Ri�1fi�1 þ Rifi þ Riþ1fiþ1; ð92Þ

0 0 0 1 1 1

0 0 0 hi�1 0 hiþ1
1 1 1 h2i�1=2! 0 h2iþ1=2!

hi�1 0 hiþ1 h3i�1=3! 0 h3iþ1=3!

h2i�1=2! 0 h2iþ1=2! h4i�1=4! 0 h4iþ1=4!

0 1 0 0 0 0

2
6666666664

3
7777777775

Li�1

Li

Liþ1

�Ri�1

�Ri

�Riþ1

2
666666664

3
777777775
¼

0

0

0

0

0

1

2
666666664

3
777777775
; ð93Þ
where hi � 1 = xi � 1�xi, and hi + 1 = xi + 1�xi.
(3) Explicit finite differences for nth derivative f(n) at x = xa: Eqs. (26), (29), (30), (53).
f ðnÞa ¼ cafa þ cifi þ ciþ1fiþ1 þ ciþ2fiþ2 þ ciþ3fiþ3 þ ciþ4fiþ4; ð94Þ

1 1 1 1 1 1

0 hi hiþ1 hiþ2 hiþ3 hiþ4
0 h2i h2iþ1 h2iþ2 h2iþ3 h2iþ4
0 h3i h3iþ1 h3iþ2 h3iþ3 h3iþ4
0 h4i h4iþ1 h4iþ2 h4iþ3 h4iþ4
0 h5i h5iþ1 h5iþ2 h5iþ3 h5iþ4

2
6666666664

3
7777777775

ca
ci
ciþ1
ciþ2
ciþ3
ciþ4

2
666666664

3
777777775
¼

1dn0
1dn1
2!dn2
3!dn3
4!dn4
5!dn5

2
666666664

3
777777775
; ð95Þ
where hi = xi�xa, and dij is the Kronecker delta function
dij ¼
1 if i ¼ j;

0 if i 6¼ j:

�
ð96Þ
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